معنای واقعی "از لحاظ آماری معنادار بودن" چیست؟
بسیاری از پژوهشگران زمانی که به یافتههای "معنادار آماری" میرسند هیجانزده میشوند، بدون اینکه معنای واقعی آن را درک کنند. معنادار بودن آمار صرفاً به این معناست که میتوان به اعتمادپذیر بودن یا موثق بودن آمار اطمینان کرد. این امر به این معنا نیست که یافتۀ بدستآمده مهم است یا برای تصمیمگیری استنادپذیر است.
برای نمونه، فرض کنیم از 1000 نفر آزمون هوش (IQ test) گرفته میشود و باید به این سوال پاسخ داده شود که آیا تفاوت معناداری میان نمرات مردان و زنان وجود دارد یاخیر. امتیاز میانگین برای مردان 98 و امتیاز میانگین برای زنان 100 است. ما از آزمون t استفاده میکنیم و به این نتیجه میرسیم که تفاوت در سطح 0.01 معنادار است. پرسش مهم این است، "خوب که چی؟". تفاوت میان 98 و 100 در آزمون IQ بسیار اندک است ... به اندازهای ناچیز است که نمیتوان هیچ اهمیتی برای آن قائل شد.
چرا نتیجۀ آمار t معنادار از آب درآمد؟ به این دلیل که اندازۀ نمونه (sample size) بزرگ بود. زمانی که اندازۀ نمونۀ بزرگی در اختیار دارید، کوچکترین تفاوتها "معنادار" هستند. معنای این امر اطمینان از واقعی بودن تفاوت است (یعنی، این تفاوت اتفاقی نبوده است). این امر به معنای بزرگ یا مهم بودن تفاوت نیست. اگر آزمون ضریب هوش را صرفاً به یک جمعیت 25 نفره داده بودیم، تفاوت میان 98 و 100 میان مردان و زنان معنادار به حساب نمیآمد.
"معناداری" یک اصطلاح آماری است که بیان میدارد "تا چه اندازهای میتوان دربارۀ وجود تفاوت یا وجود یک رابطه اطمینان داشت." گفتن این که تفاوت معنادار یا رابطۀ معنادار وجود دارد صرفاً نیمی از داستان است. ممکن است از وجود یک رابطه کاملاً مطمئن باشیم، اما آیا چنین رابطهای قوی، متوسط، یا ضعیف است؟ پس از یافتن رابطۀ معنادار، برآورد کردن قدرت این رابطه اهمیت مییابد. روابط معنادار ممکن است قوی یا ضعیف باشند. تفاوتهای معنادار ممکن است بزرگ یا کوچک باشند. این امر صرفاً به اندازۀ نمونۀ شما بستگی دارد.
در مواجهه با کارفرما، بسیاری از پژوهشگران زمانی که میخواهند ارزشمند بودن یک یافته را برای تصمیمگیری توصیف کنند از واژۀ "معنادار" استفاده میکنند. از منظر یک کارشناس آمار، استفاده از واژۀ مذکور در چنین مقامی نادرست تلقی میشود. با وجود این، واژۀ "معنادار" برای عموم تعریفی متفاوت دارد. بنابراین، بسیاری از پژوهشگران از واژۀ "معنادار" زمانی استفاده میکنند که میخواهند بیان کنند یک تفاوت یا رابطه برای کارفرما اهمیتی راهبردی دارد (بدون توجه به آزمونهای آماری). در این شرایط، از واژۀ "معنادار" برای جلب توجه کارفرما به سمت تفاوت یا رابطهای خاص استفاده میشود، زیرا این تفاوت یا رابطه میتواند برای برنامههای راهبردی شرکت مهم باشد. واژۀ "معنادار" صرفاً به حوزۀ آمار اختصاص ندارد و میتوان از [معنای عام] آن در حوزۀ تجارت نیز استفاده کرد. بنابراین، برای کارشناسان آمار، زمانی که با عموم مردم در ارتباطند، منطقیتر این است که از عبارت "از لحاظ آماری معنادار" استفاده کنند نه اینکه صرفاً بگویند "معنادار".
آزمون معناداری یکطرفه و دوطرفه (یکسویه و دوسویه؛ یکجهته و دوجهته)
یکی از مفاهیم مهم در آزمون معنادار بودن این است که آیا از آزمون یکطرفه استفاده میکنید یا از آزمون دوطرفه. پاسخ این است که چنین مسئلهای به فرضیۀ شما بستگی دارد. زمانی که فرضیۀ پژوهش جهتِ یک رابطه یا تفاوت را بیان میکند، از احتمال یکسویه استفاده میکنید. برای نمونه، برای آزمودنِ فرضیههای صفر روبرو از آزمون یکسویه استفاده میشود: بانوان در آزمون ضریب هوش از لحاظ آماری امتیاز قویتری کسب نمیکنند. میزانِ کالای خریداری شده بوسیلۀ کارمندان (white collar) و کارگران (blue collar) تفاوت معناداری ندارد. قدرت سوپرمن با قدرت یک فرد عادی تفاوت معناداری ندارد. ارزش احتمال یکسویه دقیقاً یکدومِ ارزش احتمال دوسویه است.
در صد سال گذشته، دربارۀ لزوم استفاده از آزمون یکسویه بحثهای جنجالی فراوانی وجود داشته است. منطق پشت این بحثها این بوده است که اگر پیش از انجام آزمون از جهتگیری تفاوتهای موجود آگاه هستید، دیگر چه نیاز به آزمون آماری دارید؟ با اینکه استفاده از آزمون دوسویه اطمینانپذیرتر است، شرایطی وجود دارد که در آن آزمون یکسویه مناسبتر است. بنابراین، استفاده از پرسشهای پژوهشی یکسویه یا دوسویه برعهدۀ پژوهشگر است.
روشی که برای آزمودنِ معنادار بودن استفاده میشود
زمانی که معنادار بودن را میآزماییم، مقادیر آزمایشی را که خودمان محاسبه کردهایم با مقادیر بحرانی مقایسه میکنیم. روند انجام آزمون معنادار بودن صرف نظر از اینکه چه نوع آمارهای را محاسبه میکنیم (برای نمونه، آمار t، آمار کای دو، آمار F، و غیره) یکسان است.
اگر آمارۀ شما از مقدار بحرانی بدست آمده از جدول بزرگتر باشد:
اگر آمارۀ شما از مقدار بحرانی بدست آمده از جدول کوچکتر باشد:
نرمافزارهای کامپیوتری مدرن میتوانند احتمالات دقیق را برای تمام آمارههای آزمون محاسبه نمایند. اگر یک احتمال دقیق از یک نرمافزار کامپیوتری در اختیار دارید، صرفاً آن را با سطح آلفای بحرانی مقایسه کنید. اگر احتمال دقیق کمتر از سطح آلفای بحرانی بود، یافتههایتان معنادار است، و اگر احتمال دقیق بزرگتر از سطح آلفای بحرانی بود، یافتههایتان معنادار نیست. زمانی که احتمال دقیق را در اختیار دارید، استفاده از جدول الزامی نیست.
منبع:
یک سویه و دوسویه One-Tailed and Two-Tailed
فرضیۀ صفر null hypothesis
آزمون کای دو chi-square
آمارۀ t :
t-statistic
آمارۀ F:
F-statistic
کارگران و پرسنل اداری
blue collar and white collar workers